End-to-End Training of
Deep Visuomotor Policies

Sergey Levine, Chelsea Finn, Trevor Darrell, Pieter Abbeel
UC Berkeley

Presenter: Xixi Hu

Content

Related work
Method
Experiments
Discussions

Model-based Reinforcement Learning

What is “model-based RL"?

What is a “model”?

How does it differ from model-free RL?

Reference: https://docs.google.com/presentation/d/1f-Dirlvh44-jmTIKdKcueOHx2RqQSw52t4k8HEdn5-c/edit#slide=id.g81ed7b35e4 _0_2038

Model-free vs. model-based reinforcement learning

Collect data

— T
D = {St7 Aty Tt41, St+1}t=0

Model-free: learn policy directly from data

D—>m e.g. Q-learning, policy gradient

Model-based: learn model, then use it to learn or improve a policy

D—f—onr

Reference: https://docs.google.com/presentation/d/1f-Dirlvh44-jmTIKdKcueOHx2RqQSw52t4k8HEdn5-c/edit#slide=id.g81ed7b35e4 _0_2038

What is a model?

Definition: a model is a representation that explicitly encodes knowledge about the
structure of the environment and task.

o | Atransition/dynamics model: 8g41 = fs(8¢, at) Typically what is meant by

the model in model-based RL
e | Amodel of rewards: T4 1 = fr(3t7 at)

e Aninverse transition/dynamics model: g, = f;l(st,8t+1)
e A model of distance: dz-j = fd(sz-,sj)

o A modelof future returns: Gy = Q(8¢,a¢) or Gy = V(sy)

Reference: https://docs.google.com/presentation/d/1f-DIrlvh44-jmTIKdKcueOHx2RqQSw52t4k8HEdn5-c/edit#slide=id.g81ed7b35e4_0_2038

Learning Perception and Control Policy Separately

e Separated vision pipeline and robot control pipeline

Learning Perception and Control Policy Separately

e Separated vision pipeline and robot control pipeline

Example: Learning “Ball-in-the-Cup”

Al

B

4
0

A stereo vision system was used
to track the position of the ball.
This ball position was used for
determining the reward.

Learning Perception and Control Policy Separately

Y

Visual Policy

Model b4 Model Actions

Learning Perception and Control Policy Jointly

Visual
Model

W=

Benefit:

Avoid hand-crafted design of visual perception model

Visuomotor
Policy

Perception gets better with policy training

Policy
Model

Actions

A

Learning Perception and Control Policy Jointly

Visuomotor
Policy

P Actions

e High-dimensional RGB input — Deep neural networks!

Learning Perception and Control Policy Jointly

Visuomotor
Policy

P Actions

e High-dimensional RGB input — Deep neural networks!
e But...

o Needs a lot of training data

o Needs supervision of “ground-truth” actions

Learning Perception and Control Policy Jointly

Visuomotor
Policy

P Actions

|

“Ground Truth”
Actions

e High-dimensional RGB input — Neural networks!
e But...
o Needs a lot of training data
o Needs supervision of “ground-truth” actions
e Solution: Generate “ground-truth actions” with|trajectory optimization method

Related work

e Application of deep learning on robotics control

o Backpropagation: non-differentiable and instable
o Not sample-efficient (unrealistic in real-world scene)

Learning Perception and Control Policy Jointly

e \What is trajectory optimization method?

. T e The controller learns a sequence
min E C(iBt, ut) 8.5 @y = f(mt_l, ut—l) of actions (trajectory) given fully
7 [——) = observed state

e But it cannot generalize!
u; is the action at time step t * Incontrast, a policy can

) . generalize better
x; is the state at time step t
f is the transition function

c is the cost function (negative reward of RL problem)

joint angles, end-effector pose, object posi-

tions, and their velocities; dimensionality:
14 to 32

Credit: https://michaelrzhang.github.io/model-based-rl

Learning Perception and Control Policy Jointly

e Trajectory Optimization Method — Guided Policy Search

a sequence of actions (trajectory)

7

min c(zg, up) s.b. ¢ = fzp_1,us_1) min ¢(7)

u; is the action at time step t
x; is the state at time step t
f is the transition function

c is the cost function (negative reward of RL problem)

Credit: https://michaelrzhang.github.io/model-based-rl

Learning Perception and Control Policy Jointly

e Trajectory Optimization Method — Guided Policy Search

T
uminw c(zg, up) s.b. ¢ = fzp_1,us_1) min ¢(7)
Lysieioy —1
u; is the action at time step t mion c(7) s.t. up = mo(axy)
x; is the state at time step t " /
f is the transition function

c is the cost function (negative reward of RL problem) | #cton generated by tajectory

optimization method

Action generated by
learned policy (visuomotor
model)

Credit: https://michaelrzhang.github.io/model-based-rl

Learning Perception and Control Policy Jointly

e Trajectory Optimization Method — Guided Policy Search

T
min c(zt, ut) s.b. o = f@e-1, u-1) min ¢(7)
S
u; is the action at time step t nTnon c(7) s.t. up = mo(axy)
x; is the state at time step t ’
f is the transition function l Lagrangian .
c is the cost function (negative reward of RL problem) L(1,0,)) = c(1) + Z i (mg(ze) — ut)

t=1

Credit: https://michaelrzhang.github.io/model-based-rl

Learning Perception and Control Policy Jointly

e Guided Policy Search - Optimization

T

L(1,0,\) =c(1) + > M(mg(zs) —u,) | Standard optimization problem
; Solve it using ADMM

1. Start with some initial choice of A (by A, we include \;
corresponding to each time step)

2. Assign 7 < arg min, £(7,0,).

3. Assign 0 < arg ming £(7,0, A).

4. Compute 3—i = % (7,6, \). Take a gradient step
A A+al

5. Repeat steps 2-4.

Credit: https://michaelrzhang.github.io/model-based-rl

Learning Perception and Control Policy Jointly

e Guided Policy Search - Optimization

T

L(1,0,\) =c(1) + > M(mg(zs) —u,) | Standard optimization problem
tz:; Solve it using ADMM

1. Start with some initial choice of A (by A, we include \;

corresponding to each time step)
_—| Use some trajectory optimization methods to solve it

2. Assign 7 < arg min, £(7,0,).

3. Assign 0 < arg ming £(7,0, A).

4. Compute 3—id: % (7,6, \). Take a gradient step
g

5. Repeat steps 2-4.

Credit: https://michaelrzhang.github.io/model-based-rl

Learning Perception and Control Policy Jointly

e Guided Policy Search - Optimization

T

L(1,0,\) =c(7) + > M(mg(z) —u,) | | Standard optimization problem
tz:; Solve it using ADMM

1. Start with some initial choice of A (by A, we include \;

corresponding to each time step)
_—| Use some trajectory optimization methods to solve it

2. Assign 7 < arg min, £(7,0,).

3. Assign 6 < argming £(7,0,A). —— Supervised learning

4. Compute Z—i = % (7,6, \). Take a gradient step

dg
5. Repeat steps 2-4.

Credit: https://michaelrzhang.github.io/model-based-rl

Learning Perception and Control Policy Jointly

e Guided Policy Search

T
E(Ta 0’)\) - C(T) T Z)\t(ﬂ'g(.’l}t) — ut) Recap:
t—1 e Each trajectory-centric teacher
only needs to solve the task from
a single initial state — make the

1. Start with some initial choice of A (by A, we include \; :
. . problem easier
corresponding to each time step) e The policy is trained with
2. Assign 7 < arg min, £(7,0,). supervised learning — good
3. Assign 0 < arg ming £(7,0, A). - generalization

dg _ dC) e lterative adaptation of teacher
4. Compute 7= = 7 (7, 6, A). Take a gradient step trajectories & final policy — the

A A+ a% teacher does not take actions that
the final policy cannot reproduce

5. Repeat steps 2-4.

Visuomotor Policy Architecture

RGB image spatial softmax feature motor
o points torques
ji, 7X7 conv fully fully fully
stride 2 expected connectd [l connected [connected .
RelLU 2D position RelLU | RelLU linear
240
— 109 64 40 40 7
robot
configuration
39
_ Qcii a.:r.:/ . . .
Scij = €Y i’ e cvJ e Spatial softmax — soft version of max pooling

e Get the feature points
e Learns the spatial information better

Jex Zij ScijLij

fcy = Zz’j ScijYij

Training procedural

(@)

(@)

(@)

Pretraining convolutional layers
Pretraining local controller
End-to-end guided policy search

automatically

O requires robot collect visual
pose data

learn initial ’ -
local t rain pose CNN
controllers MI"

initial initial
controllers visual features

r =)
J
;:ollectsamplesr
rom pj; J

train global

n policy g to match
local controllers p;

optimize local
controllers p;

\Guided Policy Search)

Method

e Algorithm
Target:

Ip}'l}%l EP[E(T)] s.t. p(ut|xt) — 7T0(ut|xt) \V/Xt, ut7t7

U(r) = ?:1 £(x¢, ut)

min E,[0(7)] s.t. p(ue|x¢) = mo(ue|xe) VX, uy, t,

D,To

Method

e Algorithm

6(7-) - Zle €<Xt7 ut)

0 p) Z p(x¢,ut) g(xt’ ut)] + E, (xt)'/rg(ut|xt)[)‘xt,ut] - Ep(xt,ut)[)‘xt,ut] + Vt¢?(07 p)

Z p(xt, ut) xta ut)] + Ep(Xf,)ﬂg(utlxt)[)‘xt,ut] - Ep(Xt,ut)[)‘Xt,ut] + I/tqﬁf(@,p),

OF (D, 0) = Epxy)[Dxr(p(us|x:) || o (ug]x¢))]

(0, p) = Epxy) [Dxr(mo(uelxe)) [[p(ue|x)].

T
9 $— arg nlein Z Ep(xt)7r9(ut|xt) [)\Xt,'lIt
t=1

T

p < arg mlnz (xt,ut)[g(xta ut) -
t=1

>\xt,ut —)\xt,ut + th(ﬂ-O (ut|xt)p(xt)

|+ 1% (6, p)

>\xt,ut] + Vt¢€(p7 0)

— p(ug|x¢)p(xt)).

I Z
N . - f(x) +9(2)

s.t. Ax+Bz=c

|

|

|

|

: Lp(x,y,2) = f(x) + g(2) + 27 (Ax + Bz — c)
I +g\|Ax+Bz—cH§

: minimization step for x

I x*1 2 arg min Lp(x,zk,yk)
I xcR”

|

|

|

|

|

|

|

|

minimization step for z

zFt1 2 arg mﬁn Lp(xk"‘l,z,yk)
zcR™

for dual variable update
yEHL & gk 4 o(AxkFL L Bk)

Method

e Algorithm

T
9 — a‘rg mein Z Ep(xt)ﬂ'e(utb{t) [)\Xt,ut] + Vt¢g(0?p)
t=1

T

p < arg nlp}nz Ep(Xt,ut)[z(xt7) — Axpu] + Vtgb?(pa 0)
t=1

Axeous = Axyu, + ave(mo(uelxe)p(xe) — p(uelxe)p(xe)).-

T
6 « argmin > By (uelxo) U7 Aut] + 29 (6, p)
t=1

a

p ¢ argmin > By u (%, 1) — uf Ayt] + v4¢F (p, 0)
t=1

Aut = Aut + o (B (uy x,)p(ee) [Be] — Elp(ug |xo)p(xs) [12]);

Z p(xt, ut)[e Xt, ut)] + Ep(Xt)vre(UtIXt)[)‘Xt,Ut] - Ep(Xt,Ut)[)‘Xt,ut] + l/t(bf(@,p),

Method T

p < arg mlnz p(x¢, ut)[e(xb u) — urtI‘ Nt] + Vt(b?(pa 0)

e Trajectory optlmlzatlon under unknown dynamics

p(ue|xe) = N (Kext + ke, Cy) p(Xe41|%¢t, u) = N (fxeXe + furae + fer, Ft).

1 L 79 .t. D " < €.
oin Lo(p,6) s.t. Dxr(p(r)p(r)) < e

(0,p) = Z o(ce,u) LKt 1))+ By g (ueliee) Pxese] — Ep(oceue) Pxeoe] + 1285 (6, p)

Method o

0 < arg mein Z Eop(xy)mg (ur|xe) [u;r)‘ut] + Vt¢?(9,p)

t=1
e Supervised policy optimization
N T
Lo (6, p) 2NZZE (.00 [tT[Ci 27 (04)] —log | Z™ (o) |
i=1t=1

(" (o) — b (x4)) Cyt (17 (08) — by (%)) + 2X 517 (01)] mg(ug|oy) = N (u™ (o), £™ (o))

Experiments

e How does the guided policy search algorithm compare to other policy search
methods for training complex, high-dimensional policies, such as neural
networks?

e Does our trajectory optimization algorithm work on a real robotic
platform with unknown dynamics, for a range of different tasks?

e How does our spatial softmax architecture compare to other, more standard
convolutional neural network architectures?

e Does training the perception and control systems in a visuomotor policy jointly
end-to-end provide better performance than training each component
separately?

Experiments

e How does the guided policy search algorithm compare to other policy search
methods for training complex, high-dimensional policies, such as neural

networks?
itr 1 itr 2 itr 4 itr 1 itr 5 itr 10
\PE ~JT
2D insertion 3D insertion
itr 1 itr 20 itr 40

S ae

Swimming

Experiments

target distance

target distance

-

)

o

'S

¥

o

2D insertion

100 200 300 400 500 600 700 800
samples

octopus arm

100 200 300 400 500 600 700 800
samples

—iLQG, true model
—&— REPS (100 samp)
REPS (20 + 500 samp)
—&— CEM (100 samp)
—ii— CEM (20 samp)
—&— RWR (100 samp)
—#— RWR (20 samp)
= P|LCO (5 samp)
—— ours (20 samp)
& ours (with GMM, 5 samp)

1 3D insertion . swimming
3
80-8 = 4
= o
© >
go.s g 3t
o S
— L
&2 o
0 . : ‘ , . O 0 PR
100 200 300 400 500 600 700 800 200 400 600 800 1000 1200 1400 1600
samples samples

itr 1 itr 2 itr 4 itr 12 itr SZ itr 1(;‘;

itr 1 itr 20 itr 40

N /A

Experiments

) 2D insertion policy 1 3D insertion policy . swimming policy

3

Sos | 2,

C | Qo

o _H >

o !

4204 | R 2}

() =

> @©

02 + 1t

-~ K]

0 . 1 5 | 1 L L 1 1 L 1 1 L 1 1 1 U 0
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 200 400 600 800 1000 1200 1400 1600
samples samples samples
walking policy

_020 —e— CEM (100 samp) #1 #2 #3

o)

15} —B— CEM (20 samp) m&

>

g —&— RWR (100 samp)

Z10 #1 4£2 #£3 #4

LC) ~—— RWR (20 samp)

@ 5+

b7 —— ours (20 samp)

& s — . /

100 200 300 400 500 600 700 800 ours (with GMM, 5 samp) |<
samples

Experiments

e How does the guided policy search algorithm compare to other policy search
methods for training complex, high-dimensional policies, such as neural

networks?
o Compare with methods that do not use vision, but use system states

o GPS is more sample efficient
o Better generalization in testing

1 3D insertion 1 3D insertion policy
-
208 808 :x
@ s B
+30 6 !
% .-Z'O.G
© !
-00-50.4 +0.4
2 >
—
0.2 ©
S EO.Z
. . ! L L 1 * Tl
100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

samples samples

—l— ours (20 samp)
—— ours (with GMM, 5 samp)

Experiments

autonomous execution

http://www.youtube.com/watch?v=Q4bMcUk6pcw

Experiments

e Does our trajectory optimization algorithm work on a real robotic
platform with unknown dynamics, for a range of different tasks?

autonomous execution

o Sample efficient (20-25 samples)
Robustness

http://www.youtube.com/watch?v=Q4bMcUk6pcw

Experiments

e Does our trajectory optimization algorithm work on a real robotic

platform with unknown dynamics, for a range of different tasks?

o Sample efficient (20-25 samples)
o Robustness

Experiments

e How does our spatial softmax architecture compare to other, more standard
convolutional neural network architectures?

network architecture test error (cm)
softmax + feature points (ours) | 1.30 £+ 0.73
softmax + fully connected layer | 2.59 + 1.19
fully connected layer 4.75 + 2.29
max-pooling + fully connected 3.71 £ 1.73

Performance on Object Pose
Estimation Pretraining Task

Experiments

e Visualization of feature points

(c) hammer (d) bottle

Experiments

e Does training the perception and control systems in a visuomotor policy jointly
end-to-end provide better performance than training each component

separately?

coat hanger training (18) |spatial test (24) | visual test (18)
end-to-end 100% 100% 100%
pose features | 88.9% 87.5% 83.3%

. pose prediction| 55.6% 58.3% 66.7%
Baselines: shape cube training (27) |spatial test (36) |visual test (40)
train the vision layers in end-to-end 96.3% 91.7% 87.5%

pose features | 70.4% 83.3% 40%
advancg, . pose prediction| 0% 0% n/a
then train the pOIICy toy hammer training (45) |spatial test (60) |visual test (60)
end-to-end 91.1% 86.7% 78.3%
pose features | 62.2% 75.0% 53.3%
pose prediction| 8.9% 18.3% n/a
bottle cap training (27) |spatial test (12)|visual test (40)
end-to-end 88.9% 83.3% 62.5%
pose features | 55.6% 58.3% 27.5%

Success rates on training positions, on novel test positions, and
in the presence of visual distractors. The number of trials per
test is shown in parentheses.

Experiments

(c) hammer (d) bottle

Discussions

- What are the drawbacks/limitations for this method?

Discussions

e Needs Full-state observations during training

Discussions

e Needs Full-state observations during training
e Dependent on hand-crafted rewards

Discussions

e Needs Full-state observations during training

e Dependent on hand-crafted rewards

e Relying on the ability of Trajectory Optimization Method (teachers) to discover
good trajectories

Questions?

